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Extremal coupled map lattices
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Abstract. We propose a model for co-evolving ecosystems that takes into account two levels of description of
an organism, for instance genotype and phenotype. Performance at the macroscopic level forces mutations
at the microscopic level. These, in turn, affect the dynamics of the macroscopic variables. In some regions of
parameter space, the system self-organises into a state with localised activity and power law distributions.

PACS. 05.45.Ra Coupled map lattices – 45.70.Vn Granular models of complex systems; traffic flow –
87.10.+e General theory and mathematical aspects

Complex extended systems showing a lack of scale in their
features appear to be widespread in nature, being as di-
verse as earthquakes [1,2], creep phenomena [3], material
fracturing [4–6], fluid displacement in porous media [7,8],
interface growth [9,10], river networks [11–13] and biolog-
ical evolution [14–17]. At variance with equilibrium statis-
tical mechanics, these systems do not need any fine tuning
of a parameter to be in a critical state. To explain this
behaviour, Bak, Tang and Wiesenfeld introduced the con-
cept of self-organised criticality (SOC) through the simple
sand-pile model [18,19]. In recent years, several models
with extremal dynamics have been shown to exhibit SOC
in the presence of a sufficiently decorrelated signal [20].

Several years ago, Bak and Sneppen (BS) proposed a
SOC model [21] for the co-evolution of species. In the BS
model each species occupies a site on a lattice. Each site
j is assigned a fitness, namely a random number between
0 and 1. At each time step in the simulation the smallest
fitness is found. Then the fitnesses of the minimum and of
its nearest neighbours are updated according to the rule

fn+1 = F (fn) (1)

that assigns a new fitness fn+1 at time n+1 to the chosen
lattice site. This corresponds to the extinction of the less
fit and its impact on the ecosystem. Indeed, in the orig-
inal BS model, the function F is just a random function
with a uniform distribution between 0 and 1. The system
reaches a stationary critical state in which the distribution
of fitnesses is zero below a certain threshold and uniform
above it (the actual value of the threshold depends on the
updating rule). It has been shown [22,23] that the exact
nature of the updating rule is not relevant. Indeed, the use
of a chaotic map instead of a random update, preserves
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the universality class (even if the final distribution may
be altered).

As a result of the dynamical rules, the BS system ex-
hibits sequences of causally connected evolutionary events
called avalanches [21]. The number of avalanches N fol-
lows a power law distribution N(s) ∼ s−τ where s is the
size of the avalanche and τ ∼ 1.07 [20,24,25]. Other quan-
tities also exhibit a power law behaviour with their own
critical exponents. Prominent among them are the first
and all return time distributions of activity (a site is de-
fined as active when its fitness is the minimum one),

Pf (t) ∼ t−τf Pa(t) ∼ t−τa , (2)

where τf ∼ 1.58 and τa ∼ 0.42 [20,24,25].
In the BS model, two basic ingredients are needed for

SOC to occur [23]:

1. order from extremal dynamics (minimum rule);
2. disorder from the updating rule (stochastic or other-

wise).

An oversimplification in the BS model is apparent:
each species is described by a single variable. The min-
imum rule is applied to this variable, and so is the ef-
fect of mutations. In natural evolving systems, however,
at least two-interacting-levels of organisation are present,
and both play a role in the evolution. Mutations occur at
a microscopic level, namely at the molecular level of the
genotype. This affects a macroscopic level, defining the
phenotype. Natural selection acts on the phenotype, al-
lowing the survival of some and the extinction of others,
according to the observed power law distributions.

In this paper we propose a new model, namely an
Extremal Coupled Map Lattice (ECML), that takes into
account this two level structure. The ecosystem is repre-
sented as an ensemble of N species arranged on a one-
dimensional lattice. Each species is described by means of
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Fig. 1. Space-time diagram of the active sites in a CML of 500 sites. Each dot is an active site, i.e. the site with the minimum
x at a certain time. ∆λ = 0.1 in all four cases. (a) λ0 = 3.7, ε = 0.5; (b) λ0 = 3.9, ε = 0.5; (c) λ0 = 3.8, ε = 0.1; (d) λ0 = 3.9,
ε = 0.1.

macroscopic variable xi subject to a nonlinear dynamics
and coupled to its nearest neighbours. In general, xi can
be identified with a population, or some other function
of the phenotype. The control parameter λi of the non-
linear dynamics is identified with the microscopic level
(genotype). To find the exact function connecting these
two levels of description is beyond the scope of this sim-
plified model. For this reason, we chose a logistic map for
the independent evolution of xi with λi acting as the non-
linear parameter in the map [26]. With this in mind, the
evolution of each species is given by:

xin+1 = (1− ε)f(xin) +
ε

2

[
f(xi−1

n ) + f(xi+1
n )

]
(3)

where f(x) is the logistic map f(x) = λx(1 − x) (in gen-
eral any chaotic function should do). Each site has its own
λi, extracted from a fixed distribution g(λ) [27]. The lo-
cal coupling of strength εi emulates the ecological interac-
tion between neighbouring species. A general description
should include inhomogeneities in ε. Here, for simplicity
we limit our analysis to the homogeneous case, εi ≡ ε.

We consider this CML as the substrate on which evo-
lution takes place. The parameter λi, that determines the
behaviour of xi, is regarded as the microscopic level, the

genotype, and is subject to mutation. We suppose that,
through mutation, a species is able to alter this strategy
to adapt to the environment defined by the collective be-
haviour. For this we propose an extremal mechanism, akin
to the BS model [21]. The species that, at each time step,
has the minimum value of x, is considered the candidate
to mutation. Its λ is replaced by a new value drawn from
the distribution g(λ).

We can summarise these simple dynamical rules by:

1. evaluate expression (3);
2. find the site with the absolute minimum fitness on the

lattice (this site will be called the “active” site);
3. change the value of λ of the active site;
4. go to step 1.

In Figure 1 we show the space-time picture of the ac-
tive sites for four different sets of parameters. In all cases
we take g(λ) uniform within the range (λ0, λ0 +∆λ) and
zero outside, with ∆λ = 0.1. This four cases can be con-
sidered paradigmatic of the behaviours observed in a wide
region of parameter space. Figures 1a and 1b correspond
to a rather high value of the coupling, ε = 0.5. Figures 1c
and 1d have, instead, ε = 0.1. The value of λ0 is 3.9 in (b)
and (d), 3.7 in (a), and 3.8 in (c). Depending on the value
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Fig. 2. Distribution of first return time. The parameters correspond to those in Figure 1: N = 500, ∆λ = 0.1, (a) λ0 = 3.7,
ε = 0.5. The dashed line corresponds to a power law with exponent α = 1.80(3); (b) λ0 = 3.9, ε = 0.5. The dashed line, shown
as a reference, corresponds to an exponential decay; (c) λ0 = 3.8, ε = 0.1. The dashed line corresponds to a power law with
exponent α = 1.57(2); (d) λ0 = 3.9, ε = 0.1. The dashed line corresponds to a power law with exponent α = 1.53(1), fitted to
the asymptotic region.

of the parameters, the behaviour of the successive minima
can be classified in one of the following four categories:

a) discontinuous lines at i = constant: the activity is con-
centrated in a few sites of the system, and in first ap-
proximation the same sites remain active as time goes
by;

b) uniform: the activity is spread all over the system with-
out any apparent order;

c) “worms”: the activity is mostly concentrated in a few
sites of the system. The activity, however, wanders as
time goes by following a random pattern;

d) clusterized: the activity is spread all over the system,
but in clusters. At variance with (b), at any given time,
one sees regions in space where there is no activity.

Let us discuss in more detail Figure 1c. The worms
are created during the transient. Once created, each worm
wanders in space till it encounters a second worm. At that
moment they annihilate each other. We have observed that
the inactive regions correspond to a periodic pattern in
space [28]. The worms, in turn, correspond to defects in
the periodicity. Eventually, the last two surviving worms

merge, and from there on the activity remains concen-
trated on a single “fat” worm.

For each one of these cases, we have computed the first
return time distribution. This corresponds to the distri-
bution of times between consecutive activity in the same
site. We observe that when the successive minima are dis-
tributed uniformly in space, the first return time distribu-
tion is close to an exponential (see Fig. 2b). As soon as
the activity is not uniformly distributed, be it lines or ir-
regular clusters, the first return time distribution exhibits
a power law decay (asymptotically in case (d)).

To make this picture more quantitative, we present
in Figure 3 a phase diagram, in λ-ε space (∆λ is held
constant). Phase I is characterised by the presence of
power law behaviour in the first return time distribution,
P (τ) ∼ τ−α. The value of the exponent of this distribution
is not constant within the region. Phase II, on the other
hand, is characterised by a non power law behaviour (close
to exponential) in the first return time distribution (see
Fig. 2b). This is tantamount to saying that in phase I there
is clusterization of the activity, that is absent in phase II.
In Figure 3 we indicate also a third phase (III), which cor-
responds to an asymptotic power law (see Fig. 2d), with
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Fig. 3. Phase diagram in λ-ε space. N = 200, ∆λ = 0.1.
Averaged over 10 realizations.

an exponent that is different from that in region I. The
border of this region (that we show only schematically) is
not as well defined as the border between regions I and II.

This picture holds, qualitatively, even in the absence
of the evolutionary dynamics. Indeed, if in every time step
we track the position of the minimum, but do not change
the value of its λ (this corresponds, effectively, to setting
∆λ = 0), we still obtain the four abovementioned regimes
and the corresponding first return time distributions. As
∆λ changes, the value of the exponent in the first return
time distribution (in region I) changes as well. Moreover,
the area of region II increases with increasing ∆λ.

The presence of evolutionary dynamics (i.e. ∆λ > 0),
has yet another effect. The distribution of λ evolves in
time, from an originally uniform to a stationary non-
uniform one. Indeed, this stationary distribution is peaked
close to λ0 and monotonically decreases for larger values
of λ: the system has “self-organized”. Since the extremal
dynamics favors higher values of x, and the higher the
value of λ the more likely small values of x are [30], then
large values of λ are more likely to be updated. The ex-
act shape of this distribution depends on the values of the
parameters [31].

Summarizing, the dynamics of extremal coupled maps
exhibits a behavior usually associated with criticality:

– first return time distribution is a power law (even in
the absence of extremal dynamics);

– there is self-organization in the λ space;
– the active regions are localized in space, very much like

the avalanches in SOC models (BS).

It is worth emphasizing that this behaviour (except
the self organization in λ space) remains even in the ab-
sence of extremal dynamics. In particular, the first return
time distribution exhibits a power law behaviour. This
implies that power law distributions are compatible with
non-extremal systems, as has been previously observed by
Newman and coworkers [32], in the context of noise-driven
systems.

Both SOC and CML models have been used sepa-
rately in the past to describe evolving ecosystems. To our

knowledge, the model presented here is the first synthe-
sis of both ideas that includes the level structure (geno-
type/phenotype) of real organisms.
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